首页 专栏文章正文

差动放大电路仿真实验报告 差动放大电路及研究实验报告

专栏 2022年11月16日 08:21 16 银路电子网

今天给各位分享差动放大电路仿真实验报告的知识,其中也会对差动放大电路及研究实验报告进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!

本文目录一览:

在差动放大电路实验中怎样获得双端和单端输入差信号?怎样获得共模信号?

将两个信号发生器分别接A差动放大电路仿真实验报告,B端差动放大电路仿真实验报告,A,B的另一端接地构成双端差模信号。将函数信号发生器的输出端接放大器输入A端,地端接放大器输入B端,及构成单端输入方式。

将放大器A、B短接,信号源接A端与地之间,即构成共模输入方式。

单端输入时,差动放大器的一个输入端一般接地,另一端接信号,信号的另一端也接地。相当于一个电压为0的信号与输入信号号的串联。

扩展资料:

差动放大电路的基本形式对电路的要求是:两个电路的参数完全对称两个管子的温度特性也完全对称。

它的工作原理是:当输入信号Ui=0时,则两管的电流相等,两管的集电极电位也相等,所以输出电压Uo=UC1-UC2=0。温度上升时,两管电流均增加,则集电极电位均下降,由于它们处于同一温度环境,因此两管的电流和电压变化量均相等,其输出电压仍然为零。

参考资料来源:百度百科-差动放大电路

差动放大电路, 调零电位器对增益有什么影响?

调零电位器对差动放大电路的差模增益没有影响,它只影响共模增益。差动(差分)放大电路具有放大差模信号、抑制共模信号的能力。差动(差分)放大电路由于输入级电路结构不可能完全对称,在输入为零时输出并不为零——即存在所谓的失调。调零是采取某些措施引入补偿,使电路在输入为零时输出为零。

设计一个差动放大电路(运放或者三极管,最好是运放做一个,三极管做一个),能将2路输入信号同幅同相的抵

输入共模信号为什么还有输出波形.......你的那个输出端输出的实际上是1/2幅值,是你电路图连的问题,你的电路不是差分放大电路的,LOOK,集成运放输入电阻很大,认为运放的两相输入端没有电流进入(虚短虚断原则),故可认为R2和R3是串联的,串联分压可知R2和R3连线间的电位是1/2的输入电位,运放的输出端又连到了R2和R3连线间..,所以啊 输出肯定就像你的图所示了...,共模抑制比是差分放大电路的属性数值,你的电路虽然有集成运放,但是外围电路连接有问题,不是差分放大电路,有个朋友的回答中的电路很适合你的..推荐使用...给分吧..哥哥..

差动放大电路的工作原理

1、差动放大电路的基本形式对电路的要求是:两个电路的参数完全对称两个管子的温度特性也完全对称。

它的工作原理是:当输入信号Ui=0时,则两管的电流相等,两管的集电极电位也相等,所以输出电压Uo=UC1-UC2=0。温度上升时,两管电流均增加,则集电极电位均下降,由于它们处于同一温度环境,因此两管的电流和电压变化量均相等,其输出电压仍然为零。

它的放大作用(输入信号有两种类型) 共模信号---在差动放大管T1和T2的基极接入幅度相等、极性相同的信号。如图(2)所示

共模信号的作用,对两管的作用是同向的,将引起两管电流同量的增加,集电极电位也同量减小,因此两管集电极输出共模电压Uoc为零。因此:。

于是差动电路对称时,对共模信号的抑制能力强 差模信号---在差动放大管T1和T2的基极分别加入幅度相等而极性相反的信号。如图(3)所示

差模信号的作用,由于信号的极性相反,因此T1管集电极电压下降,T2管的集电极电压上升,且二者的变化量的绝对值相等,因此: 此时的两管基极的信号为:所以:,由此我们可以看出差动电路的差模电压放大倍数等于单管电压的放大倍数。

由图可知,当对差动电路的两个输入端加上一对大小相等、相位相反的差模信号,这时第一个管的射级电流增大,第二个管的射级电流减小,且增大量和减小量时时相等。另外,由于输入差模信号,两管输出端电位变化时,一端升高。另一端则降低,且升高量等于降低量。

基本差动电路存在如下问题: 电路难于绝对对称,因此输出仍然存在零漂;管子没有采取消除零漂的措施,有时会使电路失去放大能力;它要对地输出,此时的零漂与单管放大电路一样。 为此我们要学习另一种差动放大电路------长尾式差动放大电路

基本放大电路实验报告总结

基本放大电路实验报告总结

基本放大电路实验报告总结,很多人在生活中都会充满好奇心,对所有东西都很好奇或者是不解,那么大家都知道基本放大电路实验报告总结是怎么写吗,下面和我一起来了解学习看看吧。

基本放大电路实验报告总结1

1.理解多级直接耦合放大电路的工作原理与设计方法

2.熟悉并熟悉设计高增益的多级直接耦合放大电路的方法

3.掌握多级放大器性能指标的测试方法

4.掌握在放大电路中引入负反馈的方法

二、实验预习与思考

1.多级放大电路的耦合方式有哪些?分别有什么特点?

2.采用直接偶尔方式,每级放大器的工作点会逐渐提高,最终导致电路无法正常工作,如何从电路结构上解决这个问题?

3.设计任务和要求

(1)基本要求

用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知VCC=+12V, -VEE=-12V,要求设计差分放大器恒流源的射极电流IEQ3=1~1.5mA,第二级放大射极电流IEQ4=2~3mA;差分放大器的单端输入单端输出不是真电压增益至少大于10倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10kΩ,输出电阻小于10Ω,并保证输入级和输出级的直流点位为零。设计并仿真实现。

三、实验原理

直耦式多级放大电路的主要涉及任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。

1.输入级

电路的输入级是采用NPN型晶体管的恒流源式差动放大电路。差动放大电路在直流放大中零点漂移很小,它常用作多级直流放大电路的前置级,用以放大微笑的直流信号或交流信号。

典型的差动放大电路采用的工作组态是双端输入,双端输出。放大电路两边对称,两晶体管型号、特性一致,各对应电阻阻值相同,电路的共模抑制比很高,利于抗干扰。 该电路作为多级放大电路的输入级时,采用vi1单端输入,uo1的单端输出的工作组态。 计算静态工作点:差动放大电路的双端是对称的,此处令T1,T2的相关射级、集电极电流参数为IEQ1=IEQ2=IEQ,ICQ1=ICQ2=ICQ。设UB1=UB2≈0V,则Ue≈-Uon,算出T3的ICQ3,即为2倍的IEQ也等于2倍的ICQ。

此处射级采用了工作点稳定电路构成的恒流源电路,此处有个较为简单的确定工作点的方法:

因为IC3≈IE3,所以只要确定了IE3就可以了,而IE3 UR4UE3 ( VEE), R4R4

UE3 UB3 Uon (VCC ( VEE)) R5 Uon R5 R6

uo1 ui1采用ui1单端输入,uo1单端输出时的增益Au1

2.主放大级 (Rc//RLRL (P//)1 Rb rbeR1 rbe

本级放大器采用一级PNP管的共射放大电路。由于本实验电路是采用直接耦合,各级的工作点互相有影响。前级的差分放大电路用的是NPN型晶体管,输出端uo1处的集电极电压Uc1已经被抬得较高,同时也是第二级放大级的'基极直流电压,如果放大级继续采用NPN型共射放大电路,则集电极的工作点会被抬得更高,集电极电阻值不好设计,选小了会使放大倍数不够,选大了,则电路可能饱和,电路不能正常放大。对于这种情况,一般采用互补的管型来设计,也就是说第二级的放大电路用PNP型晶体管来设计。这样,当工作在放大状态下,NPN管的集电极电位高于基极点位,而PNP管的集电极电位低于基极电位,互相搭配后可以方便地配置前后级的工作点,保证主放大器工作于最佳的工作点上,设计出不失真的最大放大倍数。

采用PNP型晶体管作为中间主放大级并和差分输入级链接的参考电路,其中T4为主放大器,其静态工作点UB4、UE4、UC4由P1、R7、P2决定。

差分放大电路和放大电路采用直接耦合,其工作点相互有影响,简单估计方式如下:

,UC4 VEE IC4 RP2 UE4 VCC IE4 R7, UB4 UE4 Uon UE4 0.7(硅管)

由于UB4 UC1,相互影响,具体在调试中要仔细确定。 此电路中放大级输出增益AU2

3.输出级电路

输出级采用互补对称电路,提高输出动态范围,降低输出电阻。

其中T4就是主放大管,其集电极接的D1、D2是为了克服T5、T6互补对称的交越失真。本级电路没有放大倍数。

四、测试方法

用Multisim仿真设计结果,并调节电路参数以满足性能指标要求。给出所有的仿真结果。

电路图如图1所示 uo2 Rc uo1Rb rbe

仿真电路图

图1静态工作点的测量:

测试得到静态工作点IEQ3,IEQ4如图2所示,符合设计要求。

图2 静态工作点测量

输入输出端电压测试:

测试差分放大器单端输入单端输出波形如图3,输入电压为VPP=4mV,输出电压为VPP=51.5mV得到差分放大器放大倍数大约为12.89倍。放大倍数符合要求。

图3 低电压下波形图 主放大级输入输出波形如图4

图4 主放大级输入输出波形图

如图所示输入电压为VPP=51.5mV,输出电压为VPP=6.75V放大倍数为131.56倍。 整个电路输入输出电压测试如图

图5 多级放大电路输入输出波形图

得到输入电压为VPP=4mV,输出电压为VPP=4.29V,放大倍数计算得到为1062倍 实验结论:

本电路利用差动放大电路有效地抑制了零点漂移,利用PNP管放大级实现主放大电路,利用互补对称输出电路消除交越失真的影响,设计并且测试了多级放大电路,得到放大倍数为1000多倍,电路稳定工作。

基本放大电路实验报告总结2

实验一:仪器放大器设计与仿真

一. 实验目的

1.掌握仪器放大器的设计方法

2.理解仪器放大器对共模信号的抑制能力

3.熟悉仪器放大器的调试方法

4.掌握虚拟仪器库中关于测试模拟电路仪器的使用方法,如示波器、毫伏表信号发生器等虚拟仪器的使用

二. 实验原理

仪器放大器是用来放大差值信号的高精度放大器,它具有很大的共模抑制比,极高的输入电阻,且其增益能在大范围内可调。仪器放大器原理图如下所示:

仪器放大器由三个集成运放构成。其中,U3构成减法电路,即差值放大器,U1、U2各对其相应的信号源组成对称的同相放大器,且R1=R2,R3=R5,R4=R6。 令R1=R2=R时,则

Vo2—Vo1=(1+2R/Rg)(Vi2—Vi1)

U3是标准加权减法器,Vo1、Vo2是其输入信号,其相应输出电压 Vo=—(R6/R5)Vo2+R4/(R3+R4)Vo1(1+R6/R5)

由于R3=R5=R4=R6=R,因而

Vo=Vo1—Vo2=(1+2R/Rg)(Vi1—Vi2)

仪器放大器的差值电压增益

Avf=Vo/(Vi1—Vi2)=1+2R/Rg

因此改变电阻的值可以改变仪器放大器的差值电压增益,此仪器放大器的增益是正的。

三. 实验内容

1.按照上述原理图构成仪器放大器,具体指标为:

(1)当输入信号Ui=2sinwt(mV)时,输出电压信号Uo=0.4sinwt(mV),Avf=200,f=1kHz

(2)输入阻抗要求Ri1MΩ

2.用虚拟仪器库中关于测试模拟电路仪器,按设计指标进行调试。

3.记录数据并进行整理分析

四. 实验步骤

按下图连好电路,并设置函数信号发生器,输出正弦,频率为1kHz,幅度为2mV;用示波器观察波形变化

其中Avf=1+2R/Rg≈200,输入的为差模信号2mV符合实验要求

五.实验结果

如图示波器CH1、CH2、CH3分别是Vi1、Vi2、Vo, 由图可知输出Vo=0.4sinwt(V), 且和Vi1同相

六.实验心得体会

从这次实验中我学会了multisim的基本操作方法,理解了仪器放大器的原理,而且通过仿真实验更加熟悉了一些常见电路元件的功能

关于差动放大电路仿真实验报告和差动放大电路及研究实验报告的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。

标签: 差动放大电路仿真实验报告

发表评论

抹茶交易所Copyright www.xjyinlu.com Some Rights Reserved. 2005-2023 本站所有信息均来自网络,为个人学习、研究、欣赏使用。投资有风险,选择需谨慎