首页 专栏文章正文

二极管分析基础电路 二极管分析基础电路原理

专栏 2022年11月18日 18:41 18 银路电子网

今天给大家聊到了二极管分析基础电路,以及二极管分析基础电路原理相关的内容,在此希望可以让网友有所了解,最后记得收藏本站。

本文目录一览:

二极管组成基本电路

二极管(英语:Diode), 电子元件当中,一种具有两个电极的装置,只允许电流由单一方向流过。许多的使用是应用其 整流的功能。而 变容二极管(Varicap Diode)则用来当作电子式的 可调电容器。

大部分二极管所具备的电流方向性,通常称之为“整流(Rectifying)”功能。二极管最普遍的功能就是只允许电流由单一方向通过(称为顺向偏压),反向时阻断 (称为逆向偏压)。因此,二极管可以想成电子版的 逆止阀。然而实际上二极管并不会表现出如此完美的开与关的方向性,而是较为复杂的非线性电子特征——这是由特定类型的二极管技术决定的。二极管使用上除了用做开关的方式之外还有很多其他的功能。

早期的二极管包含“猫须晶体("Cat's Whisker" Crystals)”以及 真空管(英国称为“热游离阀(Thermionic Valves)”)。现今最普遍的二极管大多是使用半导体材料如 硅或 锗。

1、正向性

外加 正向电压时,在正向特性的起始部分,正向电压很小,不足以克服 PN结内电场的阻挡作用,正向电流几乎为零,这一段称为死区。这个不能使二极管导通的正向电压称为 死区电压。当正向电压大于死区电压以后,PN结内电场被克服,二极管正向导通,电流随电压增大而迅速上升。在正常使用的电流范围内,导通时二极管的端电压几乎维持不变,这个电压称为二极管的正向电压。

2、反向性

外加 反向电压不超过一定范围时,通过二极管的电流是少数载流子漂移运动所形成反向电流。由于反向电流很小,二极管处于截止状态。这个反向电流又称为反向饱和电流或漏电流,二极管的反向饱和电流受温度影响很大。

3、击穿

外加反向电压超过某一数值时,反向电流会突然增大,这种现象称为 电击穿。引起电击穿的 临界电压称为二极管 反向击穿电压。电击穿时二极管失去单向导电性。如果二极管没有因电击穿而引起过热,则单向导电性不一定会被永久破坏,在撤除外加电压后,其性能仍可恢复,否则二极管就损坏了。因而使用时应避免二极管外加的反向电压过高。

二极管是一种具有单向导电的二端器件,有电子二极管和晶体二极管之分,电子二极管现已很少见到,比较常见和常用的多是晶体二极管。二极管的单向导电特性,几乎在所有的电子电路中,都要用到半导体二极管,它在许多的电路中起着重要的作用,它是诞生最早的半导体器件之一,其应用也非常广泛。

二极管的管压降:硅二极管(不发光类型)正向管压降0.7V,锗管正向管压降为0.3V, 发光二极管正向管压降会随不同发光颜色而不同。主要有三种颜色,具体压降参考值如下:红色发光二极管的压降为2.0--2.2V,黄色发光二极管的压降为1.8—2.0V,绿色发光二极管的压降为3.0—3.2V,正常发光时的额定电流约为20mA。

二极管的电压与电流不是 线性关系,所以在将不同的二极管并联的时候要接相适应的电阻。

二极管电路分析

从稳压二极管的特性可知,若能使稳压管始终工作在它的稳压区内二极管分析基础电路,则VO.基本稳定在Vz左右。

当电网电压升高时二极管分析基础电路,若要保持输出电压不变,则电阻器R上的压降应增大,即流过R的电流增大。这增大的电流由稳压二极管容纳,它的工作点将由b点移到C点,由特性曲线可知Vo≈Vz基本保持不变。

若稳压二级管稳压电路负载电阻变小时,要保持输出电压不变,负载电流要变大。VI保持不变,则流过电阻R的电流不变。负载增大的电流由稳压管调节出来,它的工作点将由b点移到a点。稳压管可认为是调节流过自身的电流大小(端电压基本不变)来满足负载电流的改变,并和限流电阻R配合将电流的变化转化为电压的变化以适应电网电压的变化。

电路分析基础怎么分析这些二极管的电压?

很简单,如果电压方向能顺着二极管,哪么二极管就导通=0.7V,再串入电池2V,就是2.7V,如果二极管不能顺着电压方向就截止,这样输出就等于电池电压。

怎么分析二极管电路?

二极管电路二极管分析基础电路的分析过程可以分成3个步骤:

(1)标出二极管二极管分析基础电路的正、负极;(2)断开二极管

请教二极管简单电路分析

左图:在D1、D2导通之前,D1两端电压大于D2两端电压,所以D1优先导通,D1导通后D2承受反向电压,所以D2截止,最后得出Uf=Ua=0.7V。

右图:VS1的稳压值小,所以VS1先被击穿,VS2不会被击穿,所以Uo就是VS1两端的电压为4V。

二极管电路的分析方法

二极管二极管分析基础电路的性能可用其伏安特性来描述。在二极管两端加电压U二极管分析基础电路,然后测出流过二极管的电流I,电压与电流之间的关系i=f(u)即是二极管的伏安特性曲线。

1、正向特性

特性曲线1的右半部分称为正向特性,由图可见,当加二极管上的正向电压较小时,正向电流小,几乎等于零。只有当二极管两端电压超过某一数值Uon时,正向电流才明显增大。将Uon称为死区电压。死区电压与二极管的材料有关。一般硅二极管的死区电压为0.5V左右,锗二极管的死区电压为0.1V左右。

当正向电压超过死区电压后,随着电压的升高,正向电流将迅速增大,电流与电压的关系基本上是一条指数曲线。由正向特性曲线可见,流过二极管的电流有较大的变化,二极管两端的电压却基本保持不变。通过在近似分析计算中,将这个电压称为开启电压。开启电压与二极管的材料有关。一般硅二极管的死区电压为0.7V左右,锗二极管的死区电压为0.2V左右。

2、反向特性

特性曲线1的左半部分称为反向特性,由图可见,当二极管加反向电压,反向电流很小,而且反向电流不再随着反向电压而增大,即达到了饱和,这个电流称为反向饱和电流,用符号IS表示。

如果反向电压继续升高,当超过UBR以后,反向电流急剧增大,这种现象称为击穿,UBR称为反向击穿电压。

写到这里,本文关于二极管分析基础电路和二极管分析基础电路原理的介绍到此为止了,如果能碰巧解决你现在面临的问题,如果你还想更加了解这方面的信息,记得收藏关注本站。

标签: 二极管分析基础电路

发表评论

抹茶交易所Copyright www.xjyinlu.com Some Rights Reserved. 2005-2023 本站所有信息均来自网络,为个人学习、研究、欣赏使用。投资有风险,选择需谨慎