电视发射机电路图 卫星601收音机电路图
本篇文章给大家谈谈电视发射机电路图,以及卫星601收音机电路图对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
- 1、求;无线电的简单发射和接收的电路图
- 2、讲解 调频发射器的电路图
- 3、发射器电路图
- 4、设计一小功率调频 发射机
- 5、如何制作简易发射机
求;无线电的简单发射和接收的电路图
无线电遥控发射、接收头的制作
无线电遥控以其传输距离远、抗干扰能力强、无方向性等优点,应用于许多领域。但因电器复杂,发送设备庞大,调试困难等原因,所以在民用领域一直受到限制,随着电子技术的发展,这些问题都得到了解决,使之具有强大的生命力。
在这里向大家介绍一种无线电遥控发射、接收头的制作方法。
电路介绍
无线电遥控发射头是一种微型发射机,其发射频率为315MHz,12V电源供电时,遥控距离为100M,工作电流仅为4mA。无线电接收头是一个象电视机高频头一样的接收、解调器,其典型工作电压为6V,守候工作电流为2mA,接收频率为315MHz。利用它们可以很方便地制作出各种无线电遥控装置,具有微型化,传输距离远、耗电省、抗干扰能力强等优点。能够方便地取代红外线、超声波发射及接收头。
无线电射头电路原理如图所示。电路四发射管V1及外围元件C1、C2、L1、L2等构成频率为315MHz超高频发射电路,通过环形天线L2向空中发射。天线L2采用镀银线或直径为1.5mm的漆包线,天线尺寸为24mm(长)X9mm(高)。三极管V1选用高频发射管BE414或2SC3355。
无线电遥控接收头T631电路原理如图所示。接收电路主要由V1、IC等组成,V1与C7、C9、L2等元件组成超高频接收电路,微调C9改变其接收频率,使之严格对准265MHz发射频率。当天线L2收到调制波时,经V1调谐放大出低频成分,再经V2前置放大后送入IC LM358,进一步放大整形后由LM358第7脚输出,该印刷电路板实际尺寸为31mmX23CC,天线尺寸为27mm(长)X9mm(高)。OUT为信号输出端,三极管V1选用BE415或2SC3355。电容C9可选用小型可调电容。IC选用LM358。
在发射及接收电路中为减小体积,所有电阻均选用1/8W或1/16W的金属膜电阻;电解电容亦用超小型电容,其它电容全部采用高频陶瓷电容。在焊接时元件引脚尽量剪短,使其紧贴电路板,电路板材料应选用高频电路板。
以下是两载采用声表面的收发装置,相对于前面的介绍的电路,具有更远的传输距离、更强的抗干扰能力和更易制作、调试。
讲解 调频发射器的电路图
这是一个工作在业余频段30ZHZ高频发射机电路,发射距离1000米,第一级是信号耦合电路,是将需要无线传输的信号经过该级放大后,耦合至发射电路,第二级为30ZHZ发射频率信号产生电路,由30ZHZ晶振产生稳定的震荡信号,由特高频晶体管放大整形,连同欲发射的低频信号同时耦合到功率放大电路。第三级是由晶体管9018组成的功率发射电路,所有信号由这一级放大并通过高频降压变压器耦合发射到空间,底下是发射功率指示电路。由电容耦合,通过倍压检波并用毫伏表进行指示。
发射器电路图
图1是较为经典的1.5km单管调频发射机电路。电路中的关键元件是发射三极管,多采用D40,D5O,2N3866等。工作电流为60--80mA。但以上三极管难以购到,且价格较高,假货较多。笔者选用其他三极管实验,相对易购的三极管C2053和C1970是相当不错的,实际视距通信距离大于1.5km。笔者也曾将D40管换成普通三极管8050,工作电流有60--80mA,但发射距离达不到1.5km,若改换成9018等,工作电流更小,发射距离也更短, 电路中除了发射三极管以外;线圈L1和电容C3的参数选择较重要,若选择不当会不起振或工作频率超出88--108MHz范围。其中L1,L2可用0.31mm的漆包线在3.5mm左右的圆棒上单层平绕5匝及10匝,C3选用5-20pF的瓷介或涤纶可调电容。实际制作时,电容C5可省略,L2上也可换成10-100mH的普通电感线圈。若发射距离只要几十米,那么可将电池电压选择为1.5-3V,并将D40管换成廉价的9018等,耗电会更少,也可参考《电子报》2000年第8期第五版(简易远距离无线调频传声器)一文后稍作改动。图1介绍的单管发射机具有电路简单,输出功率大,制作容易的特点,但是不便接高频电缆将射频信号送至室外的发射天线,一般是将0.7--0.9m的拉杆天线直接连在C5上作发射的,由于多普勒效应,人在天线附近移动时,频漂现象很严重,使本来收音正常的接收机声音失真或无声。若将本发射机作无线话筒使用,手捏天线时,频漂有多严重就可想而知了。
设计一小功率调频 发射机
调频发射机电路图
自制5瓦调频发射机
取自电视机电调高频头的IF输出端的高频振荡信号做为信号源,高频头本身的振荡频率很稳定,我又在其BT输入电压加电视发射机电路图了一个8V的稳压,这样只要电压在不低于9V的情况下,就一直可以输出稳定的频率,制作时输入端应加一只几P的耦合电容,第三级放大如果发热严重的话,可以用两只三级管并联使用,调整选频回路时,调整电感线圈了密度,此电路中心频点在98M附近,我制作的频点在96.5M上。
调整末级时R9应使用100欧电阻,最好是接上假负载,最大输出时R9可短接,末级必需加散热片,调整时用的电源最好是可以限流的安全电源。
分立元件Veronica 5W调频发射机的制作
Veronica FM发射机容易制作,性能稳定,信号纯净, 不使用专业零件和IC, 并有辅助测试功能使您在没有专业设备的情况下轻易地进行调试。它有两个版本, 1瓦和5瓦。1瓦版本适用于3公里发射距离,所需的电源是12-16V 200mA电视发射机电路图;5瓦版本适用于8公里发射距离,所需的电源是12-16V 900mA。本文介绍5瓦版本。
该发射器自带一个混音器,使您同时发射来自CD和话筒的音频信号。晶体管T1是话筒放大器,可变电阻R1和R2调节音量大小 (参见调试部分)。在R8和C21之间是振荡器,是产生无线电射频信号的部件。二极管D1是一个所谓的“变容管”, 相当于一个可调电容,它由音频信号控制,改变振荡器的振荡频率,起到变频的作用。C12,C13,和L1决定振荡器的频率。这个振荡器实际上是由两个反相振荡器组成,每个运行在50MHz附近,当两个信号结合时,便成了一个100MHz的信号。这种电路比单个100MHz振荡器稳定很多。振荡器的信号由T4、T6放大到5W。在T4右边的电路包括天线阻抗匹配和低通滤波功能。D2、D3、T5组成的电路是辅助调试用的,它将射频输出的信号取样,控制发光二极管D5,输出高时,D5也明亮一些。
元件清单
电阻:
R1+2 10k 可调 R3 820k R4 4.7k R5-7 220 R8 1.5k R9 15k R10+11 1k R12 33k R13+14 56 R15+16 68k R17 47 R18 270 R19 10 R20 22 R21 1.5k R22 270
电容:
除特殊指定外,用瓷介或云母电容。
C1,2,7, 16,17,19, 24,29及31 1n C3-5及8 10u 16V 电解 C6, 18及30 220u 16V 电解 C9, 10及20 10n C11 22p* C12 47p* C13 22p 微调 C14及15 15p* C21,25及26 65p 微调 C22 100p C23 15p C24 33p C27 1.8p C28 5.6p C32及34 47p C33 22p C35及38 1n C36 220n C37 100p
*C11, 12, 14 和 15 决定振荡频率,最好用高质量云母电容。
线圈:
用无骨架空心型。以直径1mm的导线密绕在笔芯或其它圆棒上,然后小心地拉长到正确的长度,并确定线圈的两末端如图2所示。
L1 6个线圈, 每个2匝内直径5mm,长5mm L2 3匝,内直径7mm,长7mm L3 3匝,内直径6mm,长8mm L4 在2.2k碳棒电阻(直径约2mm)上饶14匝直径0.2mm的漆包线,将漆包线的末端焊电阻的接头上。电阻的两个接头上各套一个磁珠,如图2B。 L5 5匝,内直径6mm,长11mm L6 4匝,内直径6mm,长9mm
射频扼流器(RF choke):
扼流器(H1-4)可用直径0.5mm的漆包线在直径4mm、长5mm的磁珠上饶制。注意,漆包线应从磁珠的孔中穿过,磁珠应该用工作频率在100MHz材料(通常是43号)。如果找不到磁珠,也可用方法制作:在33k碳棒电阻器上饶长0.5m直径0.2mm的漆包线,将漆包线的末端焊电阻的接头上。
H1 磁珠上饶5匝 H2 磁珠上饶1匝 H3 磁珠上饶2匝 H4 磁珠上饶3匝
二极管: D1最好用变容管对,即两个对称的变容管背靠背连在一起,中间是负极;但这并不十分重要,两个一般的变容管也可以。 D1 KV1310 D2+3 1N4148 D4 一般的放光二极管 D5 1N4001
三级管: T1+5 BC548,一般小信号三极管 T2+3 BF494,高频小信号三极管 T4 射频功率管 2W,12V,10dB@175MHz 2N4427,C2538,C1970 3DA190,3DA194 等 T6 射频功率管 4W 18V =10dB@150MHz MRF237,2N3926,C1971, C1947,MRF630,BLU99, 3DA21,3DA106,3DA56 3DA192,3DA22,等。
I1是一个5伏稳压器,给D1提供恒定电压,以保持发射器的频率稳定。
I1: 78L05 (或7805) 其它: 电路盒 BNC 射频输出插口 2 x 3.5mm 音频输入插口 电源插口 9-16V电源 天线 话筒 CD机或录音机
射频电路对粗劣的电路板(包括布线、接地、部件的位置等)是相当敏感的。应避免使用面包板;使用一面接地的双面电路板最好,但图4的设计采用接地导体填充了一般走线周围的空当,这样的设计即使用单面电路板效果也很好。元件应该尽可能用最短的导线平展地安置在电路板上。发射机应该装在金属屏蔽盒内(如铸铝盒),而金属盒连接电路的地极。可使用3mm粗的螺栓与5-10mm长的支撑柱,来达到金属盒于电路板件的良好连接。晶体管T4、T6需要散热器冷却。T4的散热器可以用内径比晶体管略小、2cm长的金属管来做。在管子上切开一个槽,使孔可以变大并套在晶体管上。输出管T6需要的散热器可用一个大约14cm长、2.5cm 宽、3mm厚的L形铝条制作(参见图10),也可用专门的5W散热器。为固定T6的孔应尽可能准确;你可依照图示在散热器上开一个槽,小心地把散热器向外弯一些,将晶体管插进去,散热器的弹性将保证晶体管和散热器的良好接触。在晶体管和散热器中间可以涂一些导热胶,如硅油。散热器用螺丝固定在PCB上,并在PCB和散热器之间夹两个垫片。注意:有的射频功率管的管壳和集电极是连通的(与三级管的型号有关),在这种情况下,散热器应和地线或屏蔽盒绝缘(离大约5mm距离)。其它型号的功率管的管脚位置可能与图2、图3不同。在盒盖上转些孔, 以保证空气流通。
话筒和光盘输入接口可用3.5mm的耳机插座, 电源也可以用类似的插座。对于天线输出,我们推荐BNC插座或电视机用的那种F型插座(原产品用N型插座)。插座的地极应该与金属屏蔽盒连接好, 并且内部导线应该尽可能短。可把D5嵌在盒盖上,这样你能经常检查这个发射机是否正常工作。
电源 Veronica 5W发射机使用由9到16伏的直流电源;用12V较佳,会得到5W的功率,耗电约900mA(与射频功率放大管T6有关)。如果电源质量低劣,电台的发射频率会不稳或会发射“嗡嗡”的交流声。如果你打算用电池或粗劣的电源, 应该增加一个额外的稳压电路,如用7812或7815代替D4(见图1的上方)。对78XX型稳压电路,XX是输出电压,如7815为15V,并联的电容大于10nF即可。
天线 电台的发射天线尤为重要,请参阅这里的专门介绍。
调试 为了使发射机正常高效率工作,需要进行一些简单的调试。调试时用一个天线“假负载”代替天线,它可帮助你区别主要发射信号和微弱的谐波信号,同时保证你不把调试信号大范围地发射出去。假负载的制作办法是:将一个47或68欧姆的碳棒电阻(与你打算使用的天线阻抗相对应)焊接到一个BNC或N型天线插座上;确定此电阻能够承受来自发射机的功率(5W),并且不是线绕型的。如果你找不到一个50欧姆5W的碳棒电阻(不能用线绕型电阻),可用3个150欧姆2W的电阻或5个250欧姆1W的电阻并联,如图2B。
将所有的微调电容调到中间位置(上部板覆盖住下部的一半), 将天线假负载接到天线输出插口,将一台光盘播放机接到CD输入插口。这时开机,发光二极管D5应该是亮的(如果不是,尝试调整C21),并且发射机应工作在98MHz左右。用一把带绝缘把的小螺丝刀来调整C21,25和26,使发光二极管达到最亮。然后按如下步骤调整发射频率:慢慢地调整C13(朝靠近你要使用的频率的方向)直到发光二极管黯淡,但不是完全灭掉;然后调整C21,25 和26直到发光二极管再到最亮;这样重复直到你获得你想要的频率。现在用一个FM收音机来检查一下你是否只在一个频率上发射信号,如果不是,你可能必须重新从头调整。如果你不能调到FM广播频段(88-108MHz)的末端,你需要改变L1:小心地压紧线圈来调低频率,或增加线圈的间距来调高频率;并尽可能保证L1的六个线圈是相同的,否则会影响发射信号的纯度。根据我们的测试结果,该电路的发射频率在发射器开机到内部温度稳定的过程中可能变化50-70KHz,因此,发射频率的调整要等到发射器温度稳定后(约需要10-30分钟)才能准确。
现在调整R2直到从光盘播放机发射的声音象一般专业电台一样大。应该注意,有些电台使用“压缩” 技术来达到使声音听起来比它实际声音大的效果,如果你也设置那么大的声音, 你也许会导致过度调制并干扰到附近频道,这是应该避免的。你必须同样小心地不要设置话筒声音太大,最好用一个带自动增益控制的外接声音混和器。
调整完毕后,将假负载换成发射天线,一般情况下发射器会正常工作,但也可小幅度地调整C21,25和26和改变天线的长度、位置、角度以达到最大发射功率,小幅度地调整C13使发射频率准确。为了避免被发现,测试天线时可用一个FM收音机的耳机输出接到发射机的CD输入口,用当地的一个FM电台的信号作测试信号。不要试图打开一个没有接天线负载的发射机,那样会损坏输出晶体管;将假负载换成发射天线时也要先把电源关掉。
如何制作简易发射机
调幅发射机主要由高频振荡器、调制器、高频放大器、天线等组成。高频振荡器是产生高频载波。调制器是将放大后的音频信号加在高频电磁波上。高频放大器把调制后的电磁波放大后经天线发射到空中传到各地。它的基本原理是,将要传送的调制信号(这里我们以话音信号为例)从低频率搬移到高频,使它能通过电离层反射进行传输,在远距离接收端我们用适当的解调装置再把原信号不失真的恢复出来,就达到了传输话音低频信号的目的。例如调幅,我们不可能直接传送话音,我们先用一个转换装置将话音信号(也就是人说的话)转换成振幅平缓变化的电压信号,这就是我们要传输的信号,叫做调制信号,然后将调制信号与一个高频率的信号在一个相乘器里相乘,再经过一个加法电路,就会得到一高频率的信号,它的包络(所谓包络就是连接周期信号每个周期内波峰的假想线)随着调制信号幅度的变化而变化,我们把这个高频信号叫做载波,把已经调制好的信号叫调幅波。就是说,我们要传输的话音信号已经包含在了调幅波中,换句话,就是我们把调制信号从低频搬移到了高频,以便利用电离层传播。这样我们通过发射装置将已调信号发射出去,在接收端接收信号。
发射机设计必须考虑以下几个参数谐波输出、寄生输出、宽带噪声、相位噪声,频率和相位的稳定度,信号的最大输出功率以及平均输出功率。由中频信号IF或其谐波与本振混频产生的三阶互调干扰必须专门考虑。其他比如所需射频载波信号的谐波、本振信号LO与与中频信号IF的馈通等多余信号都会将产生干扰。如果发射机将噪声发射出去将会导致接收机的噪声基数提高、信噪比SNR降低,从而将会减少通信所能达到的最大距离。因此功率放大器必须进行相应设计,以保证输出的附加带宽噪声最小化。
关于电视发射机电路图和卫星601收音机电路图的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
标签: 电视发射机电路图
相关文章
发表评论