低电平复位电路原理 低电平复位电路原理图
本篇文章主要给网友们分享低电平复位电路原理的知识,其中更加会对低电平复位电路原理图进行更多的解释,如果能碰巧解决你现在面临的问题,记得关注本站!
本文目录一览:
为什么复位电路在res接高电平再接低电平时实现复位,原理是怎样的?
res是低电平复位,其中低电平需要维持至少一个时钟周期(保证芯片在运行过程中能检测到信号的变化)芯片在检测到复位信号后就会进行复位,说的通俗点就是res引脚能够控制其它所有引脚的电平(宏观控制,不能具体到每一个引脚)而它的控制信号就是低电平信号的输入,那么在芯片正常工作时,res引脚接入的是高电平以保证芯片能正常使用。另外芯片对外部的信息的读取是以时钟周期为基本单位的,res引脚的信号也是一样,所以其复位时,低电平理论上必须维持一个周期以上
请问高低复位电路的工作?如图
应该在电容和电阻的中间引一条线出来,好看一点:
左图:高电平复位,电容两端的电压不能突变,上电之初,VCC(假设是)是0V,电容的电压也是0V,上电后,电容的电压维持在0V一小段时间(电容电压慢慢上升), 这个时间里,在VCC-电容-电阻-地的回路上,根据KVL(基尔霍夫电压定律), VCC = V电阻 + V 电容,此时电容为0,则电阻为VCC,即产生高电平,这个高维持一个RC的时间常数,然后恢复至0V,复位成功
右图:低电平复位,原理如上,
分析主要是理解电容两端电压不能突变这个原理,电容电压维持初值一段时间,完成复位。
单片机复位电路(高低电平复位分别)
当单片机上电瞬间由于电容电压不能突变会使电容两边的电位相同,此时RST为低电平,之后随着时间推移电源通过电阻对电容充电,充满电时RST为高电平。正常工作为高电平,低电平复位。
当单片机上电瞬间由于电容电压不能突变会使电容两边的电位相同,此时RST为高电平,之后随着时间推移电源负极通过电阻对电容放电,放完电时RST为低电平。正常工作为低电平,高电平复位。
单片机的复位引脚RST(全称RESET)出现2个机器周期以上的高电平时,单片机就执行复位操作。如果RST持续为高电平,单片机就处于循环复位状态。当单片机处于低电平时就扫描程序存储器执行程序。
扩展资料
基本结构
1、运算器
运算器由运算部件——算术逻辑单元(Arithmetic Logical Unit,简称ALU)、累加器和寄存器等几部分组成。ALU的作用是把传来的数据进行算术或逻辑运算,输入来源为两个8位数据,分别来自累加器和数据寄存器。
2、ALU能完成对这两个数据进行加、减、与、或、比较大小等操作,最后将结果存入累加器。例如,两个数6和7相加,在相加之前,操作数6放在累加器中,7放在数据寄存器中,当执行加法指令时,ALU即把两个数相加并把结果13存入累加器,取代累加器原来的内容6。
3、运算器有两个功能:
(1)执行各种算术运算。
(2)执行各种逻辑运算,并进行逻辑测试,如零值测试或两个值的比较。
(3)运算器所执行全部操作都是由控制器发出的控制信号来指挥的,并且,一个算术操作产生一个运算结果,一个逻辑操作产生一个判决。
4、控制器
控制器由程序计数器、指令寄存器、指令译码器、时序发生器和操作控制器等组成,是发布命令的“决策机构”,即协调和指挥整个微机系统的操作。其主要功能有:
(1) 从内存中取出一条指令,并指出下一条指令在内存中的位置。
(2) 对指令进行译码和测试,并产生相应的操作控制信号,以便于执行规定的动作。
(3) 指挥并控制CPU、内存和输入输出设备之间数据流动的方向。
5、主要寄存器
(1)累加器A
累加器A是微处理器中使用最频繁的寄存器。在算术和逻辑运算时它有双功能:运算前,用于保存一个操作数;运算后,用于保存所得的和、差或逻辑运算结果。
(2)数据寄存器DR
数据寄存器通过数据总线向存储器和输入/输出设备送(写)或取(读)数据的暂存单元。它可以保存一条正在译码的指令,也可以保存正在送往存储器中存储的一个数据字节等等。
(3)程序计数器PC
PC用于确定下一条指令的地址,以保证程序能够连续地执行下去,因此通常又被称为指令地址计数器。在程序开始执行前必须将程序的第一条指令的内存单元地址(即程序的首地址)送入PC,使它总是指向下一条要执行指令的地址。
(4)地址寄存器AR
地址寄存器用于保存当前CPU所要访问的内存单元或I/O设备的地址。由于内存与CPU之间存在着速度上的差异,所以必须使用地址寄存器来保持地址信息,直到内存读/写操作完成为止。
硬件特性
芯片
1、主流单片机包括CPU、4KB容量的RAM、128 KB容量的ROM、 2个16位定时/计数器、4个8位并行口、全双工串口行口、ADC/DAC、SPI、I2C、ISP、IAP。
2、系统结构简单,使用方便,实现模块化。
3、单片机可靠性高,可工作到10^6 ~10^7小时无故障。
4、处理功能强,速度快。
5、低电压,低功耗,便于生产便携式产品。
6、控制功能强。
7、环境适应能力强。
参考资料:百度百科-单片机
这个低电平复位电路图进行手动复位原理
复位按钮按下,电容C1被短接放电,C1两端电压下降,
电压下降至低电平,复位信号有效,电路复位。
低电平复位电路原理的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于低电平复位电路原理图、低电平复位电路原理的信息别忘了在本站进行查找喔。
标签: 低电平复位电路原理
相关文章
发表评论