鼠标电路图讲解 鼠标内部电路图
本篇文章给大家谈谈鼠标电路图讲解,以及鼠标内部电路图对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。
本文目录一览:
滚轮鼠标点的工作原理(最好有电路图)
中间一圆球,上面2个滚轴,分别代表X与Y,当球滚动时,带动X与Y轴转动,通过接触转变成电子信号,被计算机识别后光标移动成立。
求牛人讲鼠标工作原理和构造!
详细的网上有,我说个通俗易懂的吧
电路板中间那块大芯片你可以理解为一个数码相机,它以极快的速度拍照并对比两张照片的差别,并由此计算出鼠标移动的方向和距离这两个基本参数。将结果通知电脑,电脑再根据鼠标提供的数据在显示器上显示出鼠标指针以及其轨迹。
芯片相当于相机的CMOS芯片,透镜相当于镜头,led相当于闪光灯或光源。
左右键是两个微动开关,按下的时候接通电路,表示按下按键。弹起时电路断开。中键也是这个原理。
图片里的滚轮是机械式的,滚轮的轴插入编码器,将滚动的距离和方向由编码器传递给鼠标控制芯片再传给电脑。
这个鼠标上没有控制芯片,因为它与光感芯片集成到一起了。
光电鼠标的结构和原理
光电鼠标在主体结构上与传统的光机鼠标是一样的,所不同的就是它的定位机构。光学鼠标的定位机构也就是所说的光电引擎,它 由三个主要的子系统组成:IAS 系统,即成像系统(Image Acquisition System),这是光电引擎的的核心部分,也是决定光电引擎性能的主要系统,各代光电引擎几乎全是在IAS 系统上进行的改进。同时,这也是光电引擎上唯一一个光学电子系统,结构最为复杂;DSP 系统,即信号处理系统(Digital Signal Processor)。这是将IAS 系统生成的图像进行除噪与对比分析,得出位移数据的系统,是光电引擎中的主要 运算部件。DSP 的算法效率决定了光电引擎的数据处理能力,IAS 引擎能提供的扫描数据越多,就越是需要高效率的DSP 能力;SPI系统,即接口系统(Serial Peripheral Interface)。这是光电引擎上最传统的系统,它的作用就是将 DSP系统生成的位移信号和按键系统的按键信号进行编码然后传输给电脑。在安捷伦引擎上,SPI 系统就是如光机鼠标一样的独立芯片。而微软引擎则将它与 IAS中的电子部分、DSP 系统整合到了一块芯片上。由于光电引擎没有机械部分,所以它的重量要小各种机电鼠标结构,为了使重量符合传统的需求,所以一般在光电鼠标内部上壳处后部都会安装一块用于配重的铁块以保证稳定。 IAS 系统是三个系统中最核心也是最复杂的。它一般由三个部分组成:光源部分、纯光学部分、光学电子部分。光源部分的作用是为了 CMOS 的成像提供一个稳定可靠的光源。它一般由IAS 系统后部的一个高亮度LED 和一组光学管道以及与采样表面呈30 度角的聚光透镜组成,可以在成像镜头下方的采样表面上形成强烈的照射光。这样在粗糙的漫反射表面上就会形成有阴影的对比度强烈的影像,成为 DSP 判断移动的依据。为了节省电能,一般来说光电引擎都具有自动节能功能,当 DSP 长时间没有测出移动时就会将 LED 转为低发光状态以节省电力。 光源LED的选择与光电鼠标的"色盲"现象 其实,往往正确的答案就是最简单的答案——选择红色原因就是因为红色的高亮度LED是最成熟和最便宜的!由于红色的高亮LED最早问世,所以它的成本要比其他颜色的更低,而且其制造材料发展成熟,使得红色高亮LED的使用寿命最长。而光电引擎的成像是单色的,无论什么颜色的光源都不会产生影响。在这种情况下,除了少数厂商为了制造卖点以外,大多数厂商当然会选择红色的产品了。 但使用红色LED也带来一个问题,由于有色光在不同颜色表面上的反射率并不一致,这就导致光电鼠标在某些颜色表面上由于光线反射率低导致DSP不能识别的"色盲"问题。要根本解决这个问题,只能从根部入手,提高DSP的分析能力,但目前的光电引擎除微软自己以外,几乎所有的厂商都采用的安捷伦设计,其DSP算法完全一致。但在DSP相同的情况下,有些产品却没有这样的"色盲"问题,这是怎么回事呢? 其实原理非常简单——既然是光线反射率低带来的识别失败,简单的加大光源功率不就成了?就象旧光驱调大激光头的功率来提升读盘能力一样,换用更大功率的发光二极管——答案就是这么简单!光电鼠标的光学部分主要就是指的它的成像透镜,由于是近距成像,所以这是一个高曲光率的透镜,其制造材料一般是有机玻璃。光电系统就是IAS 系统中的CMOS 传感器,它是一个由数百个光电器件组成的矩阵,经透镜形成的采样表面图像就在CMOS 上转换为矩阵电信号,然后传输至DSP 进行处理。而光电引擎的工作原理,简单说起来就是:光源照亮采样表面,生成对比度强烈的待采样影像——通过透镜在CMOS 上成像——CMOS 将光学影像转化为矩阵电信号传输给DSP ——DSP 将此影像信号与存储的上一采样周期的影像进行比较,寻找相似点——如果发现存在移动,就发送一个位移距离信号到SPI,否则就什么也不做——继续下一个采样周期。而SPI 则对由DSP 发来的位移信号进行整合处理,按鼠标接口采样频率将每个接口采样周期内积累的位移信号统一计算后输出到鼠标接口,然后再清零准备接收下一个周期的数据。由于光学成像式光电鼠标的工作原理和传统鼠标有很大的不同,所以它的参数与传统鼠标相比也有很大的差别,我们下面就来看一看。光电鼠标的参数 CPI:与光机式鼠标一样,CPI 也是光电鼠标的一个重要指标。不过对于光电鼠标的 CPI,一直以来都有一种误解,例如当初在某个著名网站上曾有过的争论——为何安捷伦二代引擎比微软二代引擎的CMOS 尺寸小,其 CPI 反而更高?其实我们想一下就很容易明白了,光电引擎的成像其实就象是显微镜照像,其 CPI 水平就相当于照像的细节放大清晰度。那么——显微镜照像的放大清晰度会和照片的尺寸有关系吗?当然不会,它只会取决于显微镜的放大率,就算你把底片换成只有原来一半大的,也只会使得原来照片上的一些东西照不出来了,但照片的细节也不会变得更清晰或更模糊。所以,上面的问题也就一点也不奇怪了,因为光电鼠标的 CPI 与 CMOS 的像素数毫无关系,它完全是由透镜的曲光率决定的。同样,提高透镜的曲光率就可以提高鼠标的 CPI数值,但是这种提升是有限制的,因为在CMOS 尺寸不变的情况下,CPI 越高,能够成像的范围就会越小,这样对下面我们将要提到的各项参数的要求也就越高。同时,由于光电引擎的成像是单镜头近距成像,所以它的图像实际为鱼眼图像,透镜曲光率越是提升,其图像变形和像差也就越严重,最终其图像就会变得毫无用处。所以除非对其光学结构作出大的调整,否则很难期望光电鼠标的CPI 达到与高CPI 机电鼠标相当的水平。 采样频率:这是光电鼠标独有的参数,它代表的是CMOS 每秒钟对采样表面"拍照"的次数和DSP 相应的每秒运算处理能力。早期的光电鼠标,存在着高速移动鼠标时,就会出现鼠标指针不动甚至满屏幕乱飞的情况,出现这种情况,其道理也很简单,就是因为当鼠标高速移动时,很可能会出现CMOS 相邻两次拍摄的图像中没有任何共同采样点的情况,没有共同的采样点,当然也就无从比较移动的方向,就好像一个人在长途汽车上睡觉醒来不知身在何方一样。这样 DSP 当然无法正常处理,从而产生大量的错误信号。
鼠标的工作原理是什么?它的电路图是怎样的?
光电鼠标与机械式鼠标最大的不同之处在于其定位方式不同。
光电鼠标的工作原理是:在光电鼠标内部有一个发光二极管,通过该发光二极管发出的光线,照亮光电鼠标底部表面(这就是为什么鼠标底部总会发光的原因)。然后将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专用图像分析芯片(DSP,即数字微处理器)对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。
光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。下面分别进行介绍:
光学感应器
光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电鼠标基本上都采用了安捷伦公司的光学感应器。
光电鼠标的控制芯片
控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。
这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数就多,定位精度就高。
通常情况下,传统机械式鼠标的扫描精度都在200dpi以下,而光电鼠标则能达到400甚至800dpi,这就是为什么光电鼠标在定位精度上能够轻松超过机械式鼠标的主要原因。
光学透镜组件
光学透镜组件被放在光电鼠标的底部位置,从图5中可以清楚地看到,光学透镜组件由一个棱光镜和一个圆形透镜组成。其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。
圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。通过观看光电鼠标的背面外壳,我们可以看出圆形透镜很像一个摄像头通过试验,笔者得出结论:不管是阻断棱光镜还是圆形透镜的光路,均会立即导致光电鼠标“失明”。其结果就是光电鼠标无法进行定位,由此可见光学透镜组件的重要性。
发光二极管
光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。
通常,光电鼠标采用的发光二极管(如图7)是红色的(也有部分是蓝色的),且是高亮的(为了获得足够的光照度)。发光二极管发出的红色光线,一部分通过鼠标底部的光学透镜(即其中的棱镜)来照亮鼠标底部;另一部分则直接传到了光学感应器的正面。用一句话概括来说,发光二极管的作用就是产生光电鼠标工作时所需要的光源。
轻触式按键
没有按键的鼠标是不敢想象的,因而再普通的光电鼠标上至少也会有两个轻触式按键。方正光电鼠标的PCB上共焊有三个轻触式按键(图8)。除了左键、右键之外,中键被赋给了翻页滚轮。高级的鼠标通常带有X、Y两个翻页滚轮,而大多数光电鼠标还是像这个方正光电鼠标一样,仅带了一个翻页滚轮。翻页滚轮上、下滚动时,会使正在观看的“文档”或“网页”上下滚动。而当滚轮按下时,则会使PCB上的“中键”产生作用。注意:“中键”产生的动作,可由用户根据自己的需要进行定义。
当我们卸下翻页滚轮之后,可以看到滚轮位置上,“藏”有一对光电“发射/接收”装置。“滚轮”上带有栅格,由于栅格能够间隔的“阻断”这对光电“发射/接收”装置的光路,这样便能产生翻页脉冲信号,此脉冲信号经过控制芯片传送给Windows操作系统,便可以产生翻页动作了。
除了以上这些,光电鼠标还包括些什么呢?它还包括连接线、PS/2或USB接口、外壳等。由于这几个部分与机械式鼠标没有多大分别,因此,这里就不再说明了!
参考资料:
鼠标的原理及其构造
鼠标按其工作原理的不同可以分为机械鼠标和光电鼠标。机械鼠标主要由滚球、辊柱和光栅信号传感器组成。当你拖动鼠标时,带动滚球转动,滚球又带动辊柱转动,装在辊柱端部的光栅信号传感器产生的光电脉冲信号反映出鼠标器在垂直和水平方向的位移变化,再通过电脑程序的处理和转换来控制屏幕上光标箭头的移动。光电鼠标器是通过检测鼠标器的位移,将位移信号转换为电脉冲信号,再通过程序的处理和转换来控制屏幕上的鼠标箭头的移动。光电鼠标用光电传感器代替了滚球。这类传感器需要特制的、带有条纹或点状图案的垫板配合使用。 1.移动滑鼠带动滚球。 2.X方向和Y方转杆传递滑鼠移动。 3.光学刻度盘。 4.电晶体发射红外线可穿过刻度盘的小孔。 5.光学感测器接收红外线并转换为平面移动速度。
鼠标还可按键数分为两键鼠标、三键鼠标、和新型的多键鼠标。
鼠标线接法
颜色并不通用鼠标电路图讲解,尤其是小企业鼠标五花八门鼠标电路图讲解,但记住usb插头的正负电源不能接错,但是标准的usb接法红 1、黑4、绿3 、白2见下鼠标电路图讲解:
数据+或数据-不会造成鼠标损坏。
先接插头
在鼠标的四根线中先找到正负极,里面有电解电容,可以分清电源正负,先接好两根电源线,在分数据正负,插到电脑上点亮即可拔下:图中usb4端必须接负极鼠标电路图讲解;usb1端接正极切记在电路板上,四根接线端找这样的电容,不会发图来。
然后,接数据线,这个不会烧,只要正确了电脑会出声音,显示安装驱动,错误就不反应;
关于鼠标电路图讲解和鼠标内部电路图的介绍到此就结束了,不知道你从中找到你需要的信息了吗 ?如果你还想了解更多这方面的信息,记得收藏关注本站。
标签: 鼠标电路图讲解
相关文章
发表评论