首页 电路文章正文

氮化镓取代硅集成电路 氮化硅芯片 半导体 应用

电路 2022年11月15日 12:40 25 银路电子网

本篇文章给大家谈谈氮化镓取代硅集成电路,以及氮化硅芯片 半导体 应用对应的知识点,希望对各位有所帮助,不要忘了收藏本站喔。

本文目录一览:

氮化镓器件相比硅器件有哪些优势?

氮化镓本身是第三代的半导体材料,许多特性都比传统硅基半导体更强。

氮化镓相比传统硅基半导体,有着更加出色的击穿能力,更高的电子密度和电子迁移率,还有更高的工作温度。能够带来低损耗和高开关频率:低损耗可降低导阻带来的发热,高开关频率可减小变压器和电容的体积,有助于减小充电器的体积和重量。同时GaN具有更小的Qg,可以很容易的提升频率,降低驱动损耗。

充电器

以充电器这个产品分类来说,氮化镓材料的充电器可以获得更小的体积、更大的充电功率。

氮化镓是目前全球最快功率开关器件之一,并且可以在高速开关的情况下仍保持高效率水平,能够应用于更小的变压器,让充电器可以有效缩小产品尺寸。比如导入USB PD快充参考设计,使目前常见的45W适配器设计可以采用30W或更小的外形设计。

“神奇材料”氮化镓 或将开启IT产业新时代

核心观点

产业发展包括三个周期:技术突破红利期、应用实现扩张期和同质竞争普及期。随着技术普及化和应用层面红利开发殆尽,IT产业已经进入同质化竞争的阶段。氮化镓作为一种应用面广泛的“神奇材料”,或将开启IT产业新时代。

技术突破引领产业新周期

产业发展周期一般包括三个阶段。

第一阶段由技术突破开始。这里所说的技术是广义的概念,包括 科技 、材料、生产工艺等的进步和迭代。技术的突破,意味着原来无法满足的需求可以变成现实,或者以更高效、低成本的方式替代既有的方法来满足需求。在这一阶段,谁拥有“核心 科技 ”就能领先市场。当然,技术突破需要大量的研发投入和可行性实验,一旦方向出错可能导致企业之前的积累化为乌有。

相对安全的是第二个阶段,当新技术已经被验明能够创造新需求(或者提高效率),基于新技术和用户使用场景开发出应用(不仅是APP)就成为主要的扩张模式。无论是早年的Wintel联盟,还是开创移动互联网的苹果公司,都是这一阶段收获最多的公司。

到了第三阶段,技术成熟、场景相对固定,拥有成本优势、营销能力和销售能力的公司将成为主流。这一阶段的竞争也更加激励,消费者可以用最低的价格买到产品和服务,甚至享受到“免费的午餐”。而作为供给端的企业,只能在外观、颜色、尺寸、形状等维度进行微创新,激发用户潜在的非刚性需求了。

至此,产业要想继续发展,需要新一轮技术突破来驱动。而此时市场也呼唤新技术早日成熟,以便为用户创造更多的价值。

IT产业面临瓶颈

2007年,在信息技术(特别是移动信息技术)积累到即将突破时,苹果开创了全新的模式,无论是人机交互、APP,或者APP Store生态,都给用户带来了全新的体验和无限的惊喜。直到2014年iPhone 6和iPhone 6 Plus的出现,将之前IT产业积累的技术红利完全释放。期间,海量用户从PC转移到手机,通讯从2G进入到4G,内容服务从门户到分发……作为用户,在这一期间的感觉是生活欣欣向荣,充满了刺激感和新鲜感。

而此后的五年(2014-2019),随着技术普及,应用层面红利开发殆尽,产业进步的发展速度也慢了下来。企业和用户都感觉好像是下了高铁上了公交,内心充满了焦灼的感觉,期盼产业能够更加快速的迭代。

氮化镓或开启IT产业“新风口”

IT产业的发展方向有两个维度,一是速度越来越快,二是成本越来越低。下一次技术突破,将在这两个方向同时取得进步,释放巨大的技术红利,形成新的风口。

新风口源自一种第三代半导体材料——氮化镓(GaN)。这种“神奇材料”由于其自身具备的材料特性,可广泛应用于芯片制造、通讯、快速充电、无线充电、激光雷达(自动驾驶)以及制作Micro LED显示屏等多个方面。

在芯片领域,最新一代的氮化镓芯片,能够以传统芯片一半的体积,实现三倍的性能。

在通讯领域,为了实现更快的速度和更宽的带宽,通讯频段不断向高频迁移,氮化镓器件能够提供高频通讯网络所需要的功率和效能,并以更小的体积、更快的开关速度、更好的散热能力、更高的温度耐受力、更低的能耗成为新一代通讯器件的基础性材料。

在充电领域,氮化镓拥有远快于现代产品的开关速率,并且在高速开关的情况下保持高效率水平,可以将充电器的体积减少一半以上,而且发热量极大的降低。

无线充电也是氮化镓即将实现突破的重要领域。在使用谐振式耦合线圈驱动的无线充电解决方案中,基于氮化镓的器材能够在高频、高压及高功率下工作,而且具有低功耗、低电磁干扰、尺寸纤薄等特点。无线充电100W的技术方案已经成熟,随着供应链和产业链的成熟,即将进入大规模商用阶段。更有甚者,据公开报道,有公司实验成功了300W的无线充电,如果能够规模应用,将让我们全面进入“无线”时代。

氮化镓制作的器件,在无人驾驶领域也拥有广泛的应用前景。激光雷达(LiDAR)是实现无人驾驶的关键设备,它的原理是发出激光脉冲,并接收从物体上反射的激光,再基于全球定位系统(GPS)和惯性导航系统(INS)在几百米的范围内建立周围环境的模型,尺寸可以精确到厘米级。越快的激光脉冲频率能实现更高的分辨率,而更高的脉冲电流让激光雷达看得更远。氮化镓材器件制作的激光雷达系统能够在极小尺寸上实现以上功能,大大提高了建模的精准度。而且,氮化镓制作的处理器,能够快速地收集、整合、处理来自多个雷达和传感器输入的信号,从而使无人驾驶安全可靠。此外,氮化镓器件还广泛运用于电动 汽车 的操作控制、电压转换、直流交流变频、高强度车灯和充电设备等方面,为实现全方位的无人驾驶提供全面的支持。

利用氮化镓制作的Micro LED显示器材,能够由“花粉粒”大小的芯片,精确控制每个像素独立发光,从而实现在任何角度和任何条件下,屏幕都具有极强的可读性、完美的色彩和均匀自然的亮度(亮度较OLED产品提高30倍),同时还能提供更好的稳定性和更低的能耗。随着Micro LED成本的不断降低,未来将“处处皆是屏幕、时时可以交互”,极大的改变人们获取信息的方式,丰富人们与各种设备交互的场景,真正做到万物互联。

氮化镓器件除了具有卓越的特性,更加重要的是,它可以采用与当前半导体产业链相适应的平面封装结构,随着制造工艺的成熟,总体成本将按照摩尔定律快速降低,性能则翻倍提升。有分析预测,氮化镓器件的成本很快将与传统的硅料器件相当,2019年可能就会迎来这一市场拐点。之后,氮化镓将迅速普及,极大的改变IT产业的“基础设施”。

无论是芯片、通讯器件还是显示器材,氮化镓以一己之力,几乎可以实现整个产业的升级。此外,它还将引领无人驾驶、快速充电产业的迭代,从而实现IT产业外延的扩展。随着新材料的广泛应用,人与人之间、人与万物之间将建立起“即时”的连接,我们正处在这场技术革命的最前沿。

氮化镓充电器到底是什么?

氮化镓氮化镓取代硅集成电路的化学名称是GaN氮化镓取代硅集成电路,氮化镓充电器是一种新的充电科技设备。采用氮化镓做材料的充电器,可以拥有更大功率更小体积。氮化镓充电器能使同等功率下体积更小,同等体积下功率更大。

简单来说,氮化镓就是第三代半导体核心材料。

氮化镓充电器详细解释:

1、氮化镓充电器等新技术有望大幅改进电源管理、发电和功率输出的诸多方面,它具有禁带宽度大、热导率高、耐高温、抗辐射、耐酸碱、高强度和高硬度等特性。

2、氮化镓是一种可以代替硅、锗的新型半导体材料,由它制成的氮化镓开关管开关频率大幅度提高,损耗却更小。这样充电器就能够使用体积更小的变压器和其他电感元件,从而有效提高效率。

3、氮化镓相比传统硅基半导体,有着比硅基半导体出色的击穿能力,更高的电子密度和电子迁移率,还有更高的工作温度。

写到这里,本文关于氮化镓取代硅集成电路和氮化硅芯片 半导体 应用的介绍到此为止了,如果能碰巧解决你现在面临的问题,如果你还想更加了解这方面的信息,记得收藏关注本站。

标签: 氮化镓取代硅集成电路

发表评论

抹茶交易所Copyright www.xjyinlu.com Some Rights Reserved. 2005-2023 本站所有信息均来自网络,为个人学习、研究、欣赏使用。投资有风险,选择需谨慎